THE METHOD OF IMAGES FOR SOLVING THE EQUATIONS
OF HEAT CONDUCTION IN LAYERED MEDIA

N. P. Gaponenko and D. 1. Zaks UDC 536.2.01

One obtains the temperature field generated by an instantaneous point source in the layer.
It is shown that the solution can be obtained by the method of images in the plane.

In the consideration of heat-transfer processes in radioelectronic systems, one encounters prob-
lems of determination of the temperature field generated by an instantaneous point source of heat in a layer
which is in contact with a rigid medium (Fig. 1). The media have different thermal coefficients. Sucha
problem has not been considered previously. Only the solutions of the heat conduction equations for a layer
with homogeneous boundary conditions are known [1, 2]. The case of two adjoining half spaces with different
thermal coefficients is examined in [3].

In order to find the temperature field in the layer one solves the system of differential equations
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The system (1) in terms of the images is satisfied by the functions:
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The first term in (2) represents the Green function for an instantaneous source in the space. The con-
stants A, B, and C are obtained from the boundary conditions:
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We represent the denominator of D in the form
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Then (2) and (3) can be rewritten in the form
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The expressions (4) and (5) contain integrals of the form
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The first integral gives the temperature field generated by an instantaneous point source in the un-
bounded space and can be easily transformed to the preimage
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For the computation of the integrals Tk and_Izk we eliminate the expression (A + kznz)k from the
denominators by making use of the equality [4]:
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We go back to the preimage. Assuming that the order of integration may be interchanged and making
use of the convolution theorem, we obtain
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The £-integral is evaluated by making use of the relation [2]
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In order to evaluate the f—integral, we write the Hermite polynomials Heg in the form [5]
7]

N Z 4z 1 9C k-om+
H 2 k+ 1) — 1" '
ek+1(2a21/1) (et 20 " e T 1 —2my (\ o,V )

Then, the ¢-integral reduces to the evaluation of the integral [4]
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The integral I,y is evaluated similarly
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Tk(z) and I_2k(z1) have under the integral sign elementary functions and the parabolic cylinder function
D_i_4(z), which can be expressed in terms of the error function [5]
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and can be computed on a digital computer.

Finally, the temperature fields in the media 1 and 2 are described by the expressions:

T, =9 {[w (2—2) + I,y (2d — 2 —7)
4mh,

o -+l
~[—>:2( ( ) [11:(“27161—2——2)+[1,‘(9/1d+2d__2,’_2”
n=0 k=0
+’;§(—I)k( > —2nd —z+2')+1,,(2nd 5 2d —2—2' )]} (8)
o a1
T, {121(2 )+ };S‘ (— DE ( )lm_:l) 2(n- Dd+ 2|
n==0 k=0
ZL( ( ) ey 120+ 1) d —2'] } (9)

n=0 k=0

The solution of the problem can be obtained by the method of images in the plane, if we assume that
by the reflection of the sources in the plane z = 0 there appears the additional term I (z). Indeed, the first
term in (8) describes the temperature field generated by the instantaneous point source in the unbounded
space, the second term describes the field generated by the reflection of the first point in the adiabatic
plane z = d. The reflection of these sources in the plane z = 0 leads to the appearance at the points (0, —z")
and (0, —2d + z") of instantaneous point sources, corresponding to the terms Loz —2z") and Ljp(2d + z + 27)
and of additional sources, corresponding to I;;(z —z') and I;;(2d + z + z'). Each of the following reflections
in the plane z = 0 leads to the appearance of an additional source. Thus, at the points (0, —4d — 2"} and
(0, —6d + z"), corresponding to the third reflection, there are four sources available (Fig. 1).

The expression (8) can be easily transformed into the solution of the problem with the adiabatic plane
z = 0 or with zero temperature on this plane. We consider the expression (4). In the first case A =0,
the finite sum
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N (17,0

n=90

1165



NOTATION

T is the temperature;

A, Ag, @y, a3 are the coefficients of thermal conductivity and thermal diffusivity in the media 1 and 2;
q(r, z, t) is the density of the heat source;
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